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• Addendum: Cray compiler and loop optimization 
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Nuclear Physics: Basics 

• Nucleus consists of protons and neutrons 
•  Like electrons, protons and neutrons in energy-level shells 
• Some configurations more stable than others 
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Nuclear Physics: Table of Nuclides 

Source: h*p://fys246.nuclear.lu.se/images/nucchrt2.gif 



5 

Nuclear Physics: NUCCOR code 

• Nuclear Coupled-Cluster Oak Ridge code 
• CCSD: approximates interactions between nucleons using 

single and double excitation states 
• Essentially, solving huge set of coupled nonlinear equations 
• Written in Fortran 90, with modules, derived datatypes 
• Runs are constrained primarily by memory – lots of data, 

(relatively) low flop count 
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Motivation: My Job 

•  Improve code so that it 
– Scales better 
– Runs faster 

• My (not-so-)secret techniques 
–  Investigate/model performance of existing code 
–  Implement better parallel I/O 
–  Implement load balancing 
– Clean up wasteful/bad coding practices 
– Help code adhere to Fortran standards 
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Motivation: Events 
• Grad student’s version of code segfaulted only with Intel 

compiler, only with optimizations turned on, only on Jaguar 
–  First guess: seat-to-keyboard interface problem  
–  Turned out to be compiler bug! 

•  Talked to nuclear physicists 
–  Depend heavily on Intel compiler  
–  Reluctant to take risks with code 

•  I’m free to take risks and optimize code – I’m in this for 
performance, not science! 
–  Make sure that optimizations do not result in incorrect answers, but 

nothing new comes out of my benchmarks 
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Motivation: Questions 

• What is happening in this code? 
– Where is the most time spent? 
– What are the bottlenecks? 

• How does the compiler impact performance? 
– Do compiler optimizations really matter? 
– Do different compilers perform differently? 
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Experiments: Performance 

•  Instrumented optimized code with Craypat 
–  module load xt-craypat apprentice2 
–  make clean; make 
–  pat_build –O apa mycode (this creates executable 

called mycode+pat) 
–  qsub patscript 

• Generated reports using pat_report (this took a while) 
• Viewed reports with Apprentice2: app2 file.ap2 

(loading this also took a while) 
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Craypat Results 
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Craypat Results 

• Most time spent in t2_eqn_store_p_or_n 
•  This function full of deeply nested loops (very ugly) 
•  Text report provides info on which lines within subroutine 

take up the most time 
• Many different pieces take up small portions of time, but 

overarching theme is time taken by performing iterative 
updates 
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Experiments: Compiler Tests 

• Compiled NUCCOR with all 5 compilers available on Jaguar 
(Cray, GNU, Intel, Pathscale, PGI) 

•  For each compiler, 6 different optimization levels (-O0, -O1, -
O2, -O3, default, high) 

• Ran each executable 3 times on 16O benchmark, 441 
processors, using 8 cores/node on Jaguarpf: 
–  aprun -n 441 -S4 nuccor.exe 

• Checked that each executable produced correct results 
(what good is getting the wrong answer quickly?) 
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Experiments: Compiler Information 

Compiler  Version  High Op1miza1on flags 

Cray  7.1.5 (default)  -O3 

GNU  4.4.2 (default)  -O2 -ffast-math -fomit-frame-pointer 
-mfpmath=sse 

Intel  11.1.046 
(default) 

-O3 

Pathscale  3.2 (default)  -Ofast 

PGI  9.0.4 (default)  -fast 
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Results: -O0 Optimization Level 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

Cray  GNU  Intel  Pathscale  PGI 

Ti
m
e 
(s
ec
on

ds
) 

Compiler 

Elapsed Time  Iter Time 



15 

Results: -O1 Optimization Level 
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Results: -O2 Optimization Level 
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Results: -O3 Optimization Level 
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Results: Default Optimization Level 
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Results: High Optimization Level 
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Results: Aggregate Performance Results 
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Results: Best Performance at Each 
Optimization Level 

Op1miza1on 
Level 

Top 
Performer 

2nd Best 
Performer 

% Difference in wall1me between 
1st and 2nd best performers 

‐O0  PGI  Cray  3.54 

‐O1  Intel  Cray  5.88 

‐O2  Cray  GNU  25.2 

‐O3  Cray  GNU  27.3 

No flags  Cray  Intel  26.4 

OpLmal  Pathscale  Cray  20.5 

Overall winner: Cray compiler! 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Addendum: Cray Compiler 

•  I discussed results with Jeff Larkin, including surprise 
Pathscale victory 

• He suggested sending code to Cray compiler developers, so 
they can improve their compiler 

•  Last week I received very nice, very detailed analysis of 
where Cray compiler did not optimize 
–  Cray also opened ticket against this issue, and will fix it in next 

release 

•  Lessons can be applied to code and improve performance 
across all compilers 
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Addendum: Loop Optimization 
• Nuccor contains 

many deeply 
nested loops 
(depth 4) 

•  Loops written 
symmetrically for 
readability 

• But, not easy for 
compiler to 
optimize 

ii=0 
do b=below_ef+1,tot_orbs 
do j=1,below_ef 
  ii=ii+1 
  jj=0 
  do a=below_ef+1,tot_orbs 
  do i=1,below_ef 
    jj=jj+1 
    t2_ccm_eqn%f5d(a,b,i,j)= t2_ccm_eqn% 
        f5d(a,b,i,j) + tmat7(ii,jj)          
    t2_ccm_eqn%f5d(b,a,i,j)= t2_ccm_eqn% 
        f5d(b,a,i,j) - tmat7(ii,jj) 
    t2_ccm_eqn%f5d(a,b,j,i)= t2_ccm_eqn% 
        f5d(a,b,j,i) - tmat7(ii,jj) 
    t2_ccm_eqn%f5d(b,a,j,i)= t2_ccm_eqn% 
        f5d(b,a,j,i) + tmat7(ii,jj) 
    ops_cnt=ops_cnt+4 
  end do 
  end do 
end do 
end do 
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Problems in Loop 

•  Loop is easy for humans to read 
• But, strides through memory cause cache thrashing and 

increased bandwidth use 
• With below_ef = 16 and tot_orbs = 336, 

each cache line of t2_ccm_eqn%f5d will have to be 
reloaded 8 times 

• Also, array tmat7(ii,jj) referenced through 2nd 
subscript, so poor stride 

• All compilers (except maybe Pathscale with -Ofast) fail 
to interchange loop nesting 
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Loop Memory Access (Poor Stride) 

i

j

L=i+jI

... ...



26 

Loop Memory Access (Good Stride) 

i

j

L=i+jI

... ...
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Compiler Optimizations 
• Cray compiler will output annotated version of source file 

–  ftn -rm mycode.f90 
–  Outputs mycode.lst 

• Examine annotated file to figure out what’s going on 
     Primary Loop Type        Modifiers 
     ------- ---- ----        --------- 
     A - Pattern matched      a - vector atomic memory operation 
                              b - blocked 
     C - Collapsed            c - conditional and/or computed 
     D - Deleted              f - fused 
     E - Cloned                 
     I - Inlined              i - interchanged 
     M - Multithreaded        m - partitioned 
     P - Parallel             p - partial 
     R - Redundant            r - unrolled 
                              s - shortloop 
     V - Vectorized           t - array syntax temp used 
                              w - unwound 
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Annotated Loop 
371.                ii=0 
372. 1--------<     do b=below_ef+1,tot_orbs 
373. 1 2------<     do j=1,below_ef 
374. 1 2              ii=ii+1 
375. 1 2              jj=0 
376. 1 2 3----<       do a=below_ef+1,tot_orbs 
377. 1 2 3 r8-<       do i=1,below_ef 
378. 1 2 3 r8           jj=jj+1 
379. 1 2 3 r8           t2_ccm_eqn%f5d(a,b,i,j)=… +tmat7(ii,jj) 
380. 1 2 3 r8           t2_ccm_eqn%f5d(b,a,i,j)=… -tmat7(ii,jj) 
381. 1 2 3 r8           t2_ccm_eqn%f5d(a,b,j,i)=… -tmat7(ii,jj) 
382. 1 2 3 r8           t2_ccm_eqn%f5d(b,a,j,i)=… +tmat7(ii,jj) 
383. 1 2 3 r8           ops_cnt=ops_cnt+4 
384. 1 2 3 r8->       end do 
385. 1 2 3---->       end do 
386. 1 2------>     end do 
387. 1-------->     end do 

Unroll loop 8 times 
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Loop Reordering: Two Things to Try 

•  Improve stride: reorder so that tmat7 is accessed by 
consecutive row, not column 

•  Loop fission: put all f5d(a,b,:,:) in one loop, all 
f5d(b,a,:,:) in another 

•  Test these two ideas in simple loop unrolling code 
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Test Code: Original Loop 

ii = 0 
do b = abmin, abmax 
   do j = ijmin, ijmax 
      ii = ii+1 
      jj = 0 
      do a = abmin, abmax 
         do i = ijmin, ijmax 
            jj = jj+1 
            f5d(a,b,i,j) = f5d(a,b,i,j) + tmat7(ii,jj) 
            f5d(b,a,i,j) = f5d(b,a,i,j) - tmat7(ii,jj) 
            f5d(a,b,j,i) = f5d(a,b,j,i) - tmat7(ii,jj) 
            f5d(b,a,j,i) = f5d(b,a,j,i) + tmat7(ii,jj) 
         end do 
      end do 
   end do 
end do 
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Test Code: Improved Stride 

do i = ijmin, ijmax 
   jj = 0 
   do a = abmin, abmax 
      do j=ijmin, ijmax 
         jj = jj+1 
         ii = 0 
         do b = abmin, abmax 
            ii = ii+1 
            f5d(a,b,i,j) = f5d(a,b,i,j) + tmat7(ii,jj) 
            f5d(b,a,i,j) = f5d(b,a,i,j) - tmat7(ii,jj) 
            f5d(a,b,j,i) = f5d(a,b,j,i) - tmat7(ii,jj) 
            f5d(b,a,j,i) = f5d(b,a,j,i) + tmat7(ii,jj) 
         end do 
      end do 
   end do 
end do 
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Test Code: Loop Fission 

ii = 0 
do j = ijmin, ijmax 
   do b = abmin, abmax 
      ii = ii+1 
      jj = 0 
      do i = ijmin, ijmax 
         do a = abmin, abmax 
            jj = jj+1 
            f5d(a,b,i,j) =  
              f5d(a,b,i,j) +  
              tmat7(ii,jj) 
            f5d(a,b,j,i) =  
              f5d(a,b,j,i) -  
              tmat7(ii,jj) 
         end do 
      end do 
   end do 
end do 

jj = 0 
do i = ijmin, ijmax 
   do a = abmin, abmax 
      jj = jj+1 
      ii = 0 
      do j = ijmin, ijmax 
         do b = abmin, abmax 
            ii = ii+1 
            f5d(b,a,i,j) =  
              f5d(b,a,i,j) -  
              tmat7(ii,jj) 
            f5d(b,a,j,i) =  
              f5d(b,a,i,j) +  
              tmat7(ii,jj) 
         end do 
      end do 
   end do 
end do 
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Test Code: Cray Compiler Behavior 

• Original Loop: unrolled 8 times 
•  Improved Stride: conditionally vectorized, unrolled 2 times 
•  Loop Fission: 1st loop vectorized, partially unrolled 4 times; 

2nd loop vectorized, unrolled 4 times 
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Test Code: Performance of All Compilers 
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Conclusions 

•  Things I learned from this exercise 
–  Some parts of code were not standard Fortran (They are now!) 
–  All optimizations produced identical results for this computation 
–  Cray compiler is very good with Fortran, as advertised 
–  Cray compiler developers very responsive to user feedback 
–  Loop ordering makes HUGE difference 
–  Try anything once! 
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